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below, the italicized value giving the frequency: 

Experiment 
1 2 3 5 7 16 

Maxima: 11 1 31 6 3 7 
Minima: 16 27 10 3 1 2 

The distribution of the maxima and minima differ 
significantly from the expected uniform distribution. 
That experiment 3 accounts for most of the maximum 
values and experiment 2 for the minimum values is 
further indication that the modal group still contains 
some systematic errors which are correlated with 
structural parameters.* 

The low values found for the least-squares derived 
standard deviations are to be associated with the known 
systematic errors present in some, if not all, of the 
experiments. The formulas used to derive the internal 
standard deviations assume that only random errors 
are present in the observations. As this condition is 
increasingly violated, the apparent standard deviation, 
which is only a measure of the precision of fit between 
the model and the observations, becomes correspon- 
dingly unreliable as a measure of accuracy. 

fine without divergence, the derived parameters may 
be in error by several times the estimated standard 
deviations calculated from the goodness-of-fit achieved 
as a result of the least-squares refinement. Standard 
deviations on bond lengths and thermal parameters 
obtained in crystal structure refinements are realistic 
only if (1) there are no errors in the theoretical model 
and (2) if there are no systematic errors in the exper- 
iment. It is hoped that by projects such as this, the 
validity of (2) may be assessed so that we may direct 
out attention toward (1) - which includes all the ques- 
tions of physical and chemical interest. 

We would like to thank the following members and 
consultants of the 1963-1966 Commission on Crystal- 
lographic Apparatus of the I. U. Cr.: Professor M. M. 
Umanskij, Dr D. C. Phillips and Professor Y. Saito 
and, in particular, the chairman, A. McL. Mathieson, 
for exceedingly helpful comments. The project would 
of course not have been possible without the splendid 
cooperation of those who contributed data and who 
offered constructive criticism of earlier phases of the 
draft report. 

Conclusion 

Systematic differences among structure factors from 
different experiments and different crystals are mani- 
fested in systematically different parameters when the 
data are subjected to least-squares refinement. Even if 
the parameters of an acceptable theoretical model re- 

* The large number of extrema for experiment 3 is partially 
influenced by the fact that, because of the smaller number of 
reflections, it has larger internally estimated standard devia- 
tions. On this basis, the number of extrema should be 3 to 4 
times as great as for other members of the modal group. 
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A Direct Method for the Determination of Polytype Structures. I. Theoretical Basis 
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A direct method for the determination of polytype structures of SiC, ZnS and similar substances from 
X-ray data is described. It is based on the values of a Patterson-like function (the 'Pattersonian') which 
only depends on the stacking of the translationally equivalent layers of the structure. The way of ob- 
taining the Pattersonian function from the experimental intensities is described and an algorithm given 
by which the sequence of layers may be deduced. This sequence is conveniently characterized by 
the sequence of the digits of a binary number. The influence of experimental errors in the intensities on 
the possibilities of determining the real sequence is discussed. 

Introduction and SiC, depend on the polytype present (Kholuyanov, 
1964; Gobrecht, Nelkowski, Baars & Brandt, 1965; 

It has been found recently that optical and electronic Hamilton, Patrick & Choyke, 1965; Patrick, 1965; 
data of semiconducting substances, especially of ZnS Patrick, Choyke & Hamilton, 1965; Brafman & Stein- 
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berger, 1966; Farkas-Jahnke, Schanda & Kovacs, 
1966). Quite a number of polytypes of both materials 
have been known to exist for a considerable time (see 
e.g. Verma & Krishna, 1966), and the process of dis- 
covering new polytypes and of determining the se- 
quence of layers of particular polytypes does not seem 
to have come to an end as yet (see e.g. Krishna & 
Verma, 1964; Farkas-Jahnke, 1965; Gomes de Mes- 
quita, 1965; Krishna & Verma, 1966; Daniels, 1966; 
Tokonami, 1966; Brafman, Alexander & Steinberger, 
1967; Mardix, Alexander, Brafman & Steinberger, 
1967; Mardix, Brafman & Steinberger, 1967; Mardix 
& Brafman, 1968). 

Trial and error or semi-direct methods have so far 
been used to determine these structures. For polytypes 
with large periods, the sequence of layers is difficult, 
if not impossible, to determine unambiguously by these 
methods, because of the multitude of periodic se- 
quences of the same period. Therefore it seemed to us 
worthwhile to work out a direct method for the deter- 
mination of polytype structures, suitable for large 
periods as well; a short account of this has already 
been given (Farkas-Jahnke, 1966). 

Only after the material for this paper had been 
prepared did we first notice the method of unravelling 
a periodic vector set proposed by Tokonami & Hosoya 
(1965) and Tokonami (1966). The theoretical basis of 
their method seems to have much in common with 
ours. The actual working of our method seems, how- 
ever, very different from that proposed by these au- 
thors so that in our opinion a description of our own 
method is justified. 

In this paper we consider only periodic structures 
of substances like ZnS or SiC which may be described 
as follows. The structure is built of translationally equi- 
valent layers, i.e. any layer, Lp, may be brought into 
coincidence with any other layer, L0, by a suitable 
translation. Each of these layers, taken by itself, pos- 
sesses hexagonal symmetry, its structure being known. 
Consecutive layers, L~, Lu+i, may be related by either 
&two translational vectors (referred to orthohexagonal 
basic vectors a, b, e), the so called stacking vectors: 

~ = - b / 3 + c . p / M ,  t ~ = b / 3 + e . p / M ,  (1) 

where M is the number of layers per period, in the 
direction of the hexagonal axis of the single layer. 
Thus we may write the stacking vector in the form 

t p = - ( - 1 ) ~ , b / 3 + c . p / M ,  (2) 

where ~ is the superscript 0 or 1 of t~o in equation (1). 
A generalization of these concepts is possible but out- 
side the scope of this paper. 

Either of these vectors leads to geometrically equiv- 
alent pairs of consecutive layers, i.e. the polytypes of 
such a substance belong to a family of OD-structures 
(Dornberger-Schiff, 1964, 1966). In the case of ZnS 
(or SiC) the coordinates of the atoms of L0 may be 

given (in terms of orthohexagonal axes) as 

Zn (or Si) in 0,0,0; ½,½,0 

S (or C) in O,O, zo/m; ½,½,zo/M, (3) 

with z0-¼, independent of the polytype. The structure 
factor F(hkl) of such a polytype is then equal to 

F(hkl) = Fo(hkl) . S(kl) (4) 

where Fo(hkl) is the structure factor of a hypothetical 
structure which possesses the same periodicity as the 
real structure but contains only the atoms of layer L0 
within the unit cell, and where S(kl) depends only on 
the stacking sequence of the layers. 

A direct method for the determination of the poly- 
type stacking sequence will thus have to give an algo- 
rithm by which the sequence of layers, i.e. the sequence 
of stacking vectors, may be obtained from the values 
[S(kl)[ 2 which in their turn, may be deduced from the 
]Fobs(hkl)] 2 values (obtained from the experimental 
intensities) and the [Fo(hkl)] 2 values calculated for the 
known structure of the single layer (see below). 

Any sequence of p + 1 successive layers Lq to Lq+~o 
may be characterized by a binary number with the 
superscripts of the stacking vectors ocq, aq+l...o~q+~o-1 
in their proper sequence as its digits. In the following 
this characterization will be called the binary symbol 
of the sequence. The binary symbol of a periodic poly- 
type (period N) would be a binary number, periodic 
after N digits, one period of which may be obtained 
from H~.gg's or Frank-Nabarro's notation by sub- 
stituting 0 for ' - '  or 'A', and 1 for ' + '  or 'V', respec- 
tively. 

The binary symbol may be obtained from the clas- 
sical ABC notation, by writing '0' for each pair BA, 
CB, or A C, and '1' for each pair AB, BC, or CA. It 
may be obtained from the Zhdanov symbol ~1~2/~3... 
fl2s in the following way" first there are fix digits 1, 
then follow f12 digits 0, and so on, and fl2s-~ digits 1, 
and finally fl2s digits 0. 

Such a binary notation has various advantages; each 
binary can be characterized by a very short abbreviated 
symbol; namely its decimal value. Thus complete sets 
of sequences of a given length can easily be written 
down. Furthermore, binaries are easily handled by 
computers and an algorithm using binaries may thus 
be fairly easily adapted to a computer program. 

A (primitive) trigonal or hexagonal polytype is thus 
characterized by a periodic binary of M digits per 
period, and within a period the number of digits 1 
differs by a multiple of 3 from the number of digits 0. 

A binary characterizing a rhombohedral polytype 
repeats after M/3 digits, and within a period the dif- 
ference between the number of digits 1 and the number 
of digits 0 within such a repeat is not a multiple of 3. 

We shall in the following denote by N the number 
of digits per repeat, and by fl the residue modulo 3 
of the difference between the number of digits 1 and 
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the number of digits 0 per repeat of N digits. Then: 

for hexagonal and trigonal polytypes, N = M  and 
/~=0; 

for rhombohedral polytypes, N =  M/3 
in reverse description fl = 1 
in obverse description fl = - 1. 

Almost all the discussion below is applicable not 
only to polytypes of substances isomorphous with SiC 
but also to other polytype structures like graphite or 
closest packing of spheres, as long as they consist of 
translationally equivalent layers, with consecutive 
layers related by one of the stacking vectors given by 
(1). The only exception is the discussion of symmetry. 
Other hexagonal polytype structures like CdIz have 
to be considered as OD-structures consisting of two 
different kinds of layers and have to be treated in a 
different way. 

Characteristic features of X-ray diagrams 
and of the ]S(kl) [2 

As has previously been pointed out (Dornberger- 
Schiff, 1964) reflexions on X-ray diagrams of this kind 
of polytype belong to two classes: 

'Family reflexions' with k -  0 (rood 3). Their intensities 
(per layer) are the same for the whole family of poly- 
types of a substance, including, e.g. in the case of ZnS, 
the simple sphalerite and wurtzite structures• 

Reflexions with k -  + 1 (rood3). The position of these 
rettexions depends on the number of layers per period, 
on the value of fl, and their intensities on the stacking 
sequence; only these reflexions can therefore be used 
to determine the polytype. 

The electron density distribution Q(x,y,z) of the 
structure is periodic and, within an orthohexagonal 
unit cell, may be regarded as the sum of the electron 
density distributions Q~(x,y,z) of the layers L~ (with 
p=O, 1 , . . . M - l )  

M - - 1  
O(x,y,z)= X O~(x,y,z). (5) 

p----0 

0~ may be obtained from G0 by successive shifts ac- 
cording to the stacking vectors (2). This results in a 
total shift T~,. 

p--I p - I  
T~o= I~ t j=  - Z ( -  1)',b/3+pe/M. (6) 

j=0  j=0 

Therefore 

O~o(x,y,z)=Qo(x,y-m~/3,z-p/M) , (7) 

if we define 
p--I 

m~o= - I? ( -  1) ' / (mod 3), (8) 
i=0 

and thus we may take m~ as equal to 0 or to _+ 1. 

As can easily be seen, the following relations hold: 

m0=0, (9) 
mlo+l-m~- - ( -  1)'~ (rood 3). 

The set of m~o values depends on the stacking sequence 
and, in its turn, characterizes this sequence. 

The structure factor, F(hkl), of the structure is 
equal to 

F(hkl)= V . lllQ(xyz) ex p 2~zi(hx + ky+ lz) 

• dxdydz=Fo(hkl). S(k, l) .  (10) 

Fo(hkl) denotes the structure factor of a structure 
with the same unit cell as the real structure having the 
electron density distribution Qo(x,y,z) of only a single 
layer; V is the volume of the unit cell: 

Fo(hkl)= V. i l I  Qo(xyz)exp 2rci(hx + ky+ lz) 
o 

• axayaz. (11) 

S(h, k, l) = S(k, l) is the Fourier transform of a periodic 
function a(x,y, z) with the same unit cell, characterizing 
the stacking of the layers: it is different from zero only 
at the points corresponding to the vectors T~o [see 
equation (6)]; i.e. it possesses point scatterers at the 
coordinates of the Zn (or Si) atoms. It may be thought 
of as the sum of Dirac functions, so that the real elec- 
tron density Q is equal to the convolution of Q0 with 
~r (see the Appendix). 

S(k, l) is equal to 
M--1 

S(k,l)= S, exp 2rci(km2o/3+lp/M) . (12) 
p=0 

Equation (12) leads to the following relations: 

S(kl)=S(k'l '),  if k - k '  (rood 3) and 

l - l '  (mod M ) ;  (13) 

S(Td)= S~kl) ; (14) 

S(3k',l)=O if 150  (mod M ) ,  (15) 

S(3k',l)= M if l - 0  (rood M ) .  

These S values were introduced by Tokonami (1966) 
and called 'unitary structure factors' U(I). Their abso- 
lute square values may be obtained from the observed 
intensities according to 

IS(kl)12=lFobs(hkl)lZ/IFo(hkl)l 2 , (16) 

which follows from (4). 
From the ]S(kl)l z values we shah calculate values of 

a function zffm,p) which, by definition, can take on 
only non-negative integral values. These are related 
to the values vj introduced by Tokonami. 

The procedure described is, however, different from 
that suggested by Tokonami. In contrast to his pro- 
cedure, its application to trigonal and hexagonal poly- 
types is as easy as its application to rhombohedral 
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polytypes and can even be done without a computer. 
This will be clearly demonstrated when our method is 
applied to a practical example in part II of this paper 
(Farkas-Jahnke & Dornberger-Schiff, 1970). In spite 
of some similarity between our lines of thought and 
those of Tokonami, his s ta tement-  that accurate values 
of the intensities are not necessary for the determina- 
tion of a polytype structure - seems to us open to 
doubt, unless the period is quite small. His 'rationaliza- 
tion procedure' led in the test example quoted by him 
(Tokonami, 1966) to a polytype in far worse agreement 
with the observed intensities than we need expect, even 
if errors in the observed intensities are allowed for. 
Particularly striking is the fact that for l=70  the cal- 
culated intensity is equal to zero, whereas the observed 
intensity is among the strongest (one half of the inten- 
sity of the strongest reflexion) (see part II). 

The Pattersonian function n(m,p) 

Let re(m,p) be defined as the number of pairs of layers 
(generally not successive) Lr, Lr+p with differences 
mr+~- mr =- m (mod 3) where 0 < r < N. It thus cor- 
responds to a type of Patterson function and the name 
'Pattersonian function' has been suggested for it. Its 
values are equal to the values of a Patterson function 
at the coordinates v =m/3 and w = p / M  of the structure 
a(x,y,z) consisting of M point scatterers per unit cell 
distributed at positions characterized by the set of vec- 
tors T~0 of the polytype (0 <p  < M). 

The Pattersonian may be obtained from the IS(kl)l z 
values: 

N 1 M--I 
- r~ y, iS(k,l)l z re(re,p) 3M 2 k=-l  l=0 

× exp -2zc i (km/3+lp /M) .  (17) 

Using (14) and (15), this may be transformed into 

N [M-I  
-- ~ IS(0,I)I 2 exp -- 2rcilp/M re(m,p) 3 M  2 /=o 

M - I  
+ 52 IS(1, l )12exp-2rci(m/3+lp/M) 

l=0 

M--1 ] 
+ E [S(i,I)] 2 exp - 2 z c i ( - m / 3 + l p / M )  

l=0 

N 2N M-1 
- 3 + 3)kr-z t=0Z IS(1,1)F cos 2re(m/3+lp/M) 

N [  M-, IS(1,I)[2 ] 
- 3 1 + 2 ~2 M2 cos 2re(m/3 + lp/M) 

I=0 

(18) 

The scaling of the [Fobsl has to be done so that 
M - I  

rc(0,0)=N, and tlius Z [S(I,I)I2=M 2 . (19) 
1=0 

The following properties of the re(m,p) result either 
from its definition or from the relations deduced above" 

(i) zc(m,p) can have only integral non-negative 
values; 

(ii) n(m,p) is periodic in p" 

n(m,p)= rc(m + fl, p +  N) 

where f l=0  and N = M  for hexagonal or primitive 
trigonal polytypes and t =  1 or - 1  and N =  M/3 for 
rhombohedral polytypes. 

fl = 1 and fl = - 1 refer to the reverse and the obverse 
setting of the rhombohedral lattice, respectively. Ac- 
cordingly it suffices to consider the zc(m,p) values for 
0 < p < N ;  

(iii) zffO,p)+rc(1,p)+re(1,p)=N for any p; 
(iv) re(0,0)=N and thus re(1,0)=re(T,0)=0; 
(v) re(0,1)=0; 
(vi) The value of re(T, 1) denotes the number of vec- 

tors ~o~ amongst N consecutive vectors tj, and re(I, 1) 
the corresponding number of vectors ~1~. Thus 

re(l, 1 ) - r e ( -  1 ,1)=fl .  

According to (ii) and equation (17)" 

(vii) re(0,p) = zff0, 3 N - p )  = re(t, N - p )  = re(t, N + p) 
= re(- fl ,2N + p) = re(- f l , 2 N - p )  

re(1,p) = re(2fl- 1 , 2 N - p )  = re(- 1 , 3 N - p )  
=re(1 + fl, N+p)=rc(1 - f l , 2N+p)=rc( f l -  1 , N - p )  
re(- 1,p) = re(1 +fl, U - p ) =  r e (1 - f l , 2U-p)  
= r e ( t -  1, N + p )  = zc(2fl- 1 ,2N+p)=re( l ,3N-p) ;  

thus from (vii) and (v) 

re(fl, U -  1 ) = 0 .  

From these relations and from (ii) and (iii) it follows 
that it suffices to consider re(m,p) for 0 < p  < N and one 
particular value of m, provided m is chosen to make 
m+fi~O (mod 3). 

(viii) ~(0, 2) denotes the sum of the number of pairs 
o~,~) and of the number of pairs ~ 1  for 0_< q < N, t a+ l  

and as these numbers are necessarily equal, re(0,2) is 
even. Thus re(0, 2) is equal to the number of figures in 
the Zhdanov symbol, except for the trivial cubic case 
of the Zhdanov symbol (oo). 

(ix) For symmetrical X-ray diagrams, i.e. if 

IS(k,l)lZ=lS(k,i)[ z for all pairs (k , l ) ,  

it follows that re(1,p)=re(-1,p),  and the binary con- 
tains as many digits 0 as digits 1. Thus N is even, and 
because of (iii), zc(0,p) is even for all values p. 

(x) re(1 ,p)- l r ( -1 ,p)=p[re(1,1)-re(  -1 ,1) ]  (mod 3) 

o r  

re(1,p)- re(- 1 , p ) - p .  fl (mod 3). 

This relation* follows from the following considera- 
tion: re(m,p) denotes the number of vectors T~ with 
component m/3 in the b direction. The total shift in 
the b direction produced by the N vectors Tp is equal 

* We are indebted to the referee for drawing our  a t tent ion 
to this relation.  
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1 

to ½. S, m .  n (m ,p ) ,  Each of these vectors is com- 
m = - - I  

posed of  p stacking vectors tj and each of these stack- 
ing vectors t~ occurs in p vectors Tp. Therefore the 
total shift of  the N vectors Tp is congruent mod  3 to 
p times the shift produced by a set of  N stacking vec- 
tors tj: 

1 I 

S, m . n ( m , p ) = p  . ,S m . n (m ,  1) (mod 3) 
m = - - I  m = - - I  

or 

n ( 1 , p ) - n ( -  1 , p ) - p [ n ( 1 , 1 ) - n ( -  1,1)] (mod 3) 

and according to (vi) 

r c ( 1 , p ) -  n ( -  1 , p ) - p  . fl (mod 3).  

Relation between the Pattersonian and the rate 
of occurrence of different sequences within a cycle of 

a given polytype 

rc(m,p) gives, according to definition, the number  of 
pairs of  layers Lq, La+~, which are p steps apart  and 
for which 

m ~ + ~ - m ~ = m  (mod 3) (20) 

holds, within one cycle, i.e. for N consecutive values 

p 

0 

m 1 0 1 

q 

/ 

m 1 0 1 

(a) (b) 

Fig. 1. Relation between the position (m,p) of a vector peak and the reduced digital sum K, of a sequence contributing to this 
peak. (a) the sequences contributing to the peak n(1,3): - - - - - -  01 l, - . . . .  101, - . . . . . . .  110. (b) The positions of vector peaks 
characterized by m,p and K. 
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of q. According to equation (8) 
q+p-1 

m = - Z" ( -  1)~J (mod 3) (21) 
j=q 

for any pair of layers contributing to n(m,p). Let us 
now consider the binary consisting of the digits 
c~q, ~q+l, . . .  ~q+~-l, characterizing the stacking of the 
layers from Lq to Lq+p. If K'  denotes the digital sum 
of the binary, i.e. the number of digits 1, then it follows 
from (20) that 

m = K ' - ( p - K  ') (mod 3). 

The same relation holds for the 'reduced digital sum' 
K =  K' (rood 3), which is taken as 0, 1, or 2. 

The number n(m,p) of pairs of layers p steps apart 
and shifted relative to one another by m/3 in the b 
direction is thus equal to the number ~u(K,p) of se- 
quences of p digits with reduced digital sum K, within 
a period of the periodic binary, where 

m -  2 K - p  (mod 3) (22) 
o r  

m + p + K = O  (mod 3). 

The suggested procedure for the structure determina- 
tion of a polytype starts from the Pattersonian distri- 
bution calculated from the observed intensities. From 
this distribution ~u values are deduced. The subsequent 
procedure will be described below. 

Example of a direct determination of a polytype 

The mode of procedure for the direct structure deter- 
ruination of a polytype is best explained by applying 
it to a theoretical example. The n(m,p) and ~u(K,p) 
values of a hypothetical 27R polytype are given in 
Table 1. The structure is necessarily periodic after 9 
layers, and because of the trivial centre of symmetry 
of n(m,p), it is sufficient to give the Table up to p =4.  
In the following the binary symbol in square brackets 
[e l ,e2. . .  ep] will represent the number of times the 
particular sequence denoted by the binary symbol 
el,c t2, . . ,  c~p occurs within a cycle of the polytype, i.e. 
starting from N consecutive layers Lq (the rate of oc- 
currence of the sequence). Because binaries with more 
than a few digits are rather clumsy to handle we shall, 
as a kind of shorthand, replace them by their decimal 
equivalent y and indicate the number of digits of the 
binary by a subscript. Thus for example [4]3 stands for 
[100], and [4]5 for [00100]. 

Table 1. Values o f  the Pattersonian function 7ffm,p) 
and o f  (u(K,p) for  a theoretical example 27 R 

zff m, p) ~( K,p) 
rn-f  0 1 K O  1 2 

P P 
0 0 9 0 
1 4 0 5 1 4 5 0 
2 3 4 2 2 2 4 3 
3 2 2 5 3 2 2 5 
4 4 3 2 4 4 2 3 

According to the first line of Table 1 there are four 
digits 0 and five digits 1 within a cycle, i.e. 

[01=4 or [011=4 
[1]=5 or [111=5. 

Each digit 0 is followed either by a digit 0 or by a digit 
1, i.e. 

[001+[01]=4 or [012+[112=4, (23) 

and it is also preceded by either 0 or 1 : 

[00]+[10]=4 or [0]2+[2]2=4. (24) 

Similar statements hold for the digits 1 : 

[101+[111=5 or [212+[312=5 (25) 

[01]+[11]=5 or [112+[312=5. (26) 

Moreover, ~u(0,2) gives the rate of occurrence of se- 
quences [00] because this is the only sequence of length 
2 with reduced digital sum zero, i.e. for which K = 0  
(mod 3). Thus from Table 1 : 

[00]=2 or [012=2. (27) 

From equations (23) to (27) the rates for the other 
sequences of length 2 may be deduced: 

[01]=2 or [112=2 
[10]=2 or [2]2=2 (28) 
[11]=3 or [312=3. 

These values are in keeping with the values of y/(1,2) 
and y,,(2,2) given in Table 1. To keep track of all the 
rates of occurrence of sequences deduced, they are 
summarized in Table 2, each sequence being charac- 
terized by its decimal equivalent. Using a similar ar- 
gument, we obtain equations for the rates of the se- 
quences of length 3 from those of length 2. Thus e.g. 
from (27): 

and 
[000]+[100]=2 or [0]+[4]=2 (29) 

[000]+[001]=2 or [0]+[11=2.  (30) 

Moreover from Table 1 : 

[100]+[010]+[001]=2 or [4]+[2]+[1]=2 (31) 

[000]+[111]=2 or [0 ]+[7 ]=2 .  (32) 

In this way the values for the rates of the sequences 
of length 3 listed in Table 2 are obtained. 

From these values we proceed to p = 4. By a similar 
argument each of these values gives two equations 
(partly identical). Besides from [000] = 1 it follows that 
[0000] = 0  by indirect proof: a sequence 0000 contains 
2 sequences 000 and thus cannot be present, if [000] = 1. 
Similarly, [1111] = 0 follows from [111] = 1. Without 
making further use of ~, values we obtain the rates 
listed in Table 2 under p = 4. 

In these deductions full use has to be made of the 
non-negative integral character of these rates. 
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T a b l e  2. Rates of  occurrence [Y]v of binary sequences 
of  length p with decimal equivalent y for the polytype 

27Rth 
The reduced digital sum K is also given. 

K p 1 2 3 4 
), 

0 0 4 2 1 0 
I I 5 2 1 1 
1 2 2 0 0  
2 3 3 2 1 
1 4 1 0 
2 5 1 o 
2 6 2 1 
0 7 1 1 
1 8 1 
2 9 0 
2 10 0 
0 11 1 
2 12 1 
0 13 1 
0 14 1 
1 15 0 

T h e  va lues  o b t a i n e d  are  a g a i n  in  k e e p i n g  w i t h  t he  
values  in  T a b l e  1. F r o m  the  d i f fe ren t  s e q u e n c e s  o f  
l e n g t h  four ,  on ly  n ine  are  p re sen t  in  the  p o l y t y p e ,  each  
o c c u r r i n g  exac t ly  once  w i t h i n  a cycle.  W e  m a y  n o w  
p r o c e e d  by b u i l d i n g  up  t he  s e q u e n c e  o f  t he  w h o l e  cycle,  
a t  e a c h  s tep  t e s t i ng  w h e t h e r  t h e r e  are  o n e  o r  t w o  ways  
o f  c o n t i n u i n g  t he  sequence .  S t a r t i ng  e.g. w i t h  1100 we  
o b t a i n  u n i q u e l y :  

1 1 0 0  

1000 
0001 

0011 

1100011 

F o r  the  n e x t  s tep  t he re  a re  t w o  poss ib i l i t i e s ;  bu t  t h e n  
for  e a c h  o f  t hese  t he  c o n t i n u a t i o n  is a g a i n  ful ly de te r -  
m i n e d  un t i l  9 d ig i ts  (i.e. a pe r iod )  a re  full.  I t  is easy to  
ver i fy  t h a t  in e a c h  case t he  9 s e q u e n c e s  o f  4 digi ts  o c c u r  
as d e t e r m i n e d :  

T a b l e  3. List of  some terms and some relations in binary and in decimal equivalent notation 

Terms Binary Decimal equivalent 
Symbol of a sequence of length p g13233" " "av with aj = 0 or 1 7:0 

Rate of occurrence of such a seluence [(Xl~X2g3"" "(X:0] [)]:0 

q/(O,1) [01 [011 
q/(1,1) [1] [111 

(a) gt(O,2) [00] [0]2 
~,(1,2) [01] + [10] = 2 .  [01] [112 + [2]2 = 2.  [112 
¢t(2,2) [11] [3]2 

Relations 
(b) [~1cx2" • • a:01 = [al(X2""" a:00] + [oqOCz" • • o~:01] 

[~1~2 " ' "  ~:0] = lOll(X2 " ' "  g:0] "JI- [10CI~2""" g:0] 
[7]:0 = [2y]:0+1 + [2y + 1]~o +1 
[Y]:0 = [Y]v+l + [2:0 + Y]:0+1 

(c) If p > 1 and [00" • • 0] > 0 I f  p > 1 a n d  [0]:0-1 > 0 

p -  1 digits 

it follows that [00. • • O] < [00. • • O] 
p digits p - -  1 digits 

If p >  1 and [11" " .1 ]>0  
p- -  1 digits 

it follows that [11. .-  1] < [11" • -1] 
p digits p - -  I digits 

it follows that [0]:0 < [O]p-1 

If p >  1 and [2p-1-1]:0-1 >0  

it follows that [2v - 1]:0 < [2v-1 - 1]:0-1 

(d) 

(e)  

[00"  "01]=[100"- "0] 
p- -  1 digits p - -  1 digits 
[11" '101=[011""11  
p- -  1 digits p - -  1 digits 

If p >  1 and [ 0 0 " " 0 ] > 0  
p -  1 digits 

it follows that 
[00.. -011 = [100.. .  O] > 0 

p- -  1 digits p - -  1 digits 

I f p > l  a n d [ l l . . - 1 ] > O  
p- -  1 digits 

it follows that 
[11 . . .10] - - [011 . . .11>0  
p ~ t s  p--1 digits 

[1]:o = [2:0-1]v 

[2v - 2]~ = [2v-1 - 1]v 

If p > 1 and [01:0-1 > 0 

it follows that 
[1]v = [2v-q:0 > 0 

If p >  1 a n d  [2p-1  - 1]:0-1 > 0  

it follows that 
[2v - 2]p = [2:0-1 - 1]v 
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1100011 1100011 
0110 0111 

1101 1110 
. . . . . . . . .  

110001101 110001110 

These two sequences are closely related: one is the 
reversal of the other. As one can easily prove, both 
are in agreement with the ~ values of Table 1 of which 
actually only a part has been used. They constitute a 
homometric pair. (For a discussion of homometric 
pairs of polytypes of this kind, see Appendix). Their 
Zhdanov symbols are (3321)3 and (3312)3 respectively. 

General procedure for the direct determination 
of a polytype 

Following the procedure used in our example we may 
now formulate relations to be used in the general pro- 
cedure. In Table 3, the various relations are given in 
binary notation, and in parallel with it, in decimal equi- 
valent notation. The length p of the sequence is indi- 
cated by a subscript to the decimal equivalent where 
this is necessary to make it unambiguous. 

Relations (b) denote that each sequence occurring 
within a period of our periodic binary is preceded 
(and followed) either by a digit 0 or 1. Relations (c) 
are concerned with the rates of occurrence of sequences 
consisting solely of digits 0 or of digits 1, respectively. 
It is sufficient to prove the relations for sequences of 
length p and p -  1 consisting solely of digits 0 (decimal 
equivalent 0v and 0v-l). These sequences must occur 
within sequences of the type 100.. .01 [decimal equi- 

q 

valent (2q+1+ 1)q+2] for q>_p-1. The rates of these 
sequences are [0]v = q - p  + 1 and [0]v-1 = q - p  + 2. Thus 
[0]v < [0]p-1 for every single sequence (2 q+l + 1)q+2, and 
thus also for the sums of the corresponding rates for 
all these sequences. 

Relation (d) follows from (b): 
specifying a~ = aj+l . . . .  = al+~ = 0 we obtain 

[0 . . . 01=[0 . . . 01+[0 . . . 01 ]  
p digi ts  p +  1 p 

[o. . .o]  = [o . . . o1+[ lO . . . o1  
p d ig i t s  p +  1 p 

thus 
[0 . . . 01 ]=[10 . . . 0 ]  

p digi ts  p d igi ts  

and in a similar way the relation with 0 and 1 inter- 
changed. 

For part of relation (a) we made use of [01]=[10] 
which is a special case of (d). 

The relations given in Table 3 may now be used for 
the following general procedure. Starting with the 
values for p = 2  given by (a), the rates for sequences 
of length p +  1 are deduced from those for length p 
using (b) and (c) and the g values, as shown in the 
example discussed above. This has to be continued 

until a sufficient number of sequences occurs with the 
rate zero. This should be the case for p=N/2 at the 
latest. Then, starting from any one sequence (length p), 
this sequence is continued by a sequence having as 
digits number 1 to p -  1, the digits number 2 to p of 
the former sequence. If this continuation is ambiguous, 
both possibilities have to be discussed. In this way a 
closed cycle of binary digits is obtained (or several 
such cycles). Care has to be taken that each sequence 
is included in the cycle at its proper rate. In some 
cases closed cycles of less than N digits result. These 
cases have to be discarded. Any solution arrived at in 
this way has to be tested for consistency with ~ values 
of higher p. 

If at a certain stage p, a unique determination of 
the rates is not possible, a sum of rates according to 
(b) or corresponding to a low ~ value is taken, and the 
cases compatible with this sum discussed one after the 
other. Thus if for example [A] + [B] = 2, there are three 
cases to be discussed: [A] may be equal to 0, 1 or 2. 
Then one of the following situations may arise: 

(i) in one or more cases to be discussed we are led 
at a later stage to results contradictory to some of the 
relations (a) to (c) or to the ~u values. Such cases have 
to be discarded; 

(ii) more than one of the cases discussed is in keeping 
with relations (a) to (c) and the ~, values. They may 
either constitute homometric polytypes, or different 
descriptions of the same polytype. 

All binary cycles compatible with the set of gt values 
should be tested by calculating ISealol 2 values and dis- 
crepancy factors, or by applying a similar test. 

After the polytype sequence has been determined, 
the space group of the particular polytype structure 
follows. The fact that our method does not presuppose 
a knowledge of the space group is of importance be- 
cause, in the case of the polytypes, the symmetry of 
the diffraction pattern does not allow the unambiguous 
distinction of hexagonal from trigonal polytypes (see 
Appendix. 

In some cases the determination of the polytype may 
be shortened considerably. If, for example, ~u(1,2) = 2, 
the binary symbol of the polytype has the following 
form: 1 1 . . . 1 0 0 . . . 0 ,  i.e. M-q digits 1 followed by q 
digits 0. The number q is equal to N(0,1). Thus no 
further work is needed if ~(1 ,2)=2 and g(0,1) is 
known. 

Even in the general case the deduction of the poly- 
type (and its homometric mates, if any) from correct 

values takes only a day or two, working without a 
computer, and dealing with polytypes with N between 
20 and 40. 

On the determination of n- or v-values 
from experimental intensity data 

As we have seen, a given set of correct integral non- 
negative ~ values allows us, by the method described, 
to obtain the real polytype structure or the real struc- 
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ture with all its homometric mates. If experimental 
errors lead to ~, values which may differ from the true 
~v values by 1 or 2, it is still possible to apply our meth- 
od and obtain all polytype structures compatible with 
the ~ values within their limits of error. This is done 
by discussing various sets of ~, values. Our experience 
shows that the number of cases to be discussed rises 
sharply with increasing errors, and that errors within 
about + 2 at the most, and within + 1 on average, are 
about the limit of what can still be handled by hand 
with a great amount of labour. We believe that even 
if a computer were used, the limits could not be ex- 
tended much further. Besides, for wider limits of error, 
the number of compatible polytype structures will 
probably be so large that the result of such a deter- 
ruination would be of little interest. This is not due 
to the special method employed to obtain all polytypes 
compatible with the experimental data, but it is a 
property of the polytype structures themselves. If this 
has not become obvious to date, it is due to the fact 
that previously methods to obtain all compatible poly- 
types have not been applied, and that the calculation 
of structure factors for all polytype structures of a 
given length could not be carried out for N values of 
the order of magnitude considered here. 

It follows from these considerations that the ac- 
curacy of the experimental data is important. In our 
opinion, the practice of indicating the intensities only 
as vs, s, m, w, vw, a, or of giving them only in big 
steps without proper corrections, is to be deplored. 
We wish to make a plea against this practice and for 
intensity measurements as accurate as possible, and 
on as many hkl reflexions as possible. 

Then refexions which, according to equations (13) 
and (14) ought to give the same IS(k,l)l values may 
be used to obtain ISI values less affected by absorption 
and other experimental errors than those obtained 
from one or two reflexions only. 

As has been pointed out to us* it may be that the 
observed intensities are proportional to the [FI values 
rather than to the [FI 2 values (Darwin, 1914). Generally 
speaking, the intensity is equal to 

1 + I cos 2013 
I(hkl)  = KlF(hkl)l  ~ sin 20 (33) 

where K is a constant, 0 is the Bragg angle of the re- 
fexion and T = 1 for a perfect, and z =2  for a mosaic, 
crystal (Darwin, 1914). In our case we may, according 
to (4), replace [F(hkl)[ by ]Fo(hkl)[. [S(hkl)[, and con- 
sider reflexions which, according to (13) or (14) ought 
to have the same ISl value. Then for such a set of re- 
flexions 

l o g / + l o g  sin 20--log (1 +1 cos 20[ 3) 

----3. log IF01+g' (34) 

* We are indebted to the referee for drawing our attention 
to this possibility. 

and this relation may be used to test whether r is ap= 
proximately equal to 1 or 2 in any practical case. 

If r =  1, then l o g / + l o g  sin 20-1og (1 +[ cos 20[) 
plotted against log If0l will - except for experimental 
errors - give points lying oll a straight line of slope 1. 

If r~_2, then l o g / + l o g  sin 2 0 - l o g  (1 +cos 2 20) 
plotted against log If01 will - except for experimental 
errors - give points on a straight line of slope 2. 

After a decision has been made concerning the 
proper value of r, the values of ]F(hkl)[ 2 may be de- 
duced from the intensities, according to (33). Mean 
values of [F(hkl)lZ/lFo(hkl)] 2 of a set of refexions cor- 
responding to the same IS[ value will then give the 
desired ISI 2 values. 

Another way of testing which r is the correct one 
is based on the relation 

M - - 1  

l~ IS(1,l)12= lS(O0)l 2 (35) 
l = 0  

which follows from (15) and (19). The two sides of 
equation (35) are calculated for the assumption r =  1 
and r = 2 respectively, using the mean values obtained 
as described for the IS(1,I)I 2 and mean values of 
I F(hkl)[2/lFo(hkl)[ 2 for triples (h, k, l) with 

k = 0 (mod 3) 
h+k/3=-O (rood 2) 

and l = 0  (rood N) 

i.e. the family reflexions. 
These tests applied to the practical example reported 

in part II led to a value of z which is certainly not larger 
than 1. If a similar value of r holds for polytypes which 
have been investigated by other workers in the field, 
this fact may have discouraged them from quoting 
numerical values for their observed intensities. 

APPENDIX 

We assumed that any polytype [electron density O(xyz)] 
is composed of translationally equivalent layers [of 
electron density O~(xyz)] according to equation (5). 
Then O(xyz) may be obtained as the convolution of 
Oo(xyz) with a function a(xyz): 

O(xyz) = f I I  a(x' y'z') . Qo(X- x ' , y -  y ' , z -  z')dx'dy'dz' 

(AI) 

a possesses the same periodicity as the structure itself; 
the triple integral has to be taken over the volume of 
one unit ceil. The function g characterizes the sequence 
of layers in the polytype; it is different from zero only 
at the positions characterized by the vectors T~ [de- 
fined by equation (6)] and those related to them by 
the translational vectors resulting from the periodicity 
of the polytype, a corresponds to a sum of Ewald's 
peak functions of content 1 (see e.g. Luis & Amoros, 
1968, p. 40). 

The space group of the polytype, the symmetry of 
the diffraction pattern and the existence or non-exis- 
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tence of a homometric mate to the polytype depend 
on the space group of the distribution cr, and the eight 
possibilities are summarized in Table 4. Each of these 
possibilities* corresponds to a characteristic sequence 
of figures in the Zhdanov symbol which is also given 
in Table 4. 

From (A1) it follows that the space group of O(xyz), 
i.e. of the polytype, contains at least those symmetry 
elements which are common to the space groups of 
a(xyz) and P6mm, i.e. the space group of Oo(xyz). The 
point group of S(hkl) corresponds to the space group 
of (r(xyz), and the point group of [S(hkl)[ 2 results from 
the latter through an addition of a centre of symmetry 
(if not yet present). Because 

IF(hkl)12=lS(hkl)l 2 . IFo(hkl)I z , (A2) 

the point group of IFI 2 necessarily contains all sym- 
metry elements common to the point group of [S(hkl)l 2 
and to 6/mmm, the point group of IF0] 2. 

Thus, if a(xyz) has the space group P-6m2, the point 
group of IFI 2, i.e. the symmetry of the diffraction pat- 
tern, is hexagonal although the point group of F is 
only trigonal, as is the polytype itself. One particular 
example of this has been found by Ramsdell & Kohn 
(1951) who noticed the fact without commenting on 
the general aspect• 

Quite recently, Sadanaga & Takeda (1968) proposed 
the term 'diffraction enhancement of symmetry' for a 
similar difference between the symmetry of the dif- 
fraction pattern and of the structure, which they came 
across in mica structures• They discuss a class of struc- 
tures consisting of different kinds of layers which they 
show to exhibit this effect. If this term is generally ac- 
cepted, it certainly should be applied to those poly- 
types of ZnS-like structures whose a(xyz) has the space 
group P~m2. 

As has been shown in the main part of this paper, 
our method for the determination of the polytype 
makes use of the Bravais lattice ( f l=0 for primitive, 
f l= + 1 for a rhombohedral lattice), but not of the 
trigonal or hexagonal symmetry of the structure. Ac- 
tually, in the case of a hexagonal diffraction pattern 
a knowledge of the trigonal or hexagonal symmetry, 
if available, could be made use of. This knowledge 
does not, however, seem necessary for the determina- 
tion of a polytype. If, however, an attempt is made 
to find the correct polytype by calculating structure 
factors for the whole class of polytypes of a certain 
periodicity compatible with the observed symmetry of 
the diffraction pattern, one has to include this class of 
trigonal polytypes in those cases where hexagonal sym- 
metry of the diffraction pattern has been observed, 
whereas they need not be considered if the observed 
symmetry is trigonal. 

It might be useful to discuss what possibilities arise, 
if X-radiation is used of a wave length which is scat- 

* See International Tables for X-ray Crystallography (1959)• 

A C 26A - 3 
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tered anomalously by atoms present in the structure. 
Then 

Fan(hkl) = F(hkl)  + iF'(hkl) 

=S(hkl )  . [Fo(hkl)+ iF'o(hkl)] , (A3) 

where F(hkl)  is the Fourier transform of the real part 
of the (complex) scattering function &n(xyz), and 
F'(hkl)  is the Fourier transform of the imaginary part 
of &n(xyz), and Fo(hkl) and Fo(hkl ) have correspond- 
ing meanings. 

IF~(hkl)12/IS(hkl)l 2 = IFo(hkl)l 2 + IF'o(hkl) 2 

- i[Fo(hkl)F'o(hkl)- Fo(hkl)F'o(hkl)l . (A4) 

If Fo(hkl ) ~ 0  this expression has no centre of sym- 
metry. Thus the diffraction pattern obtained with 
anomalous scattering can have no higher symmetry 
than Fo(hkl). By using anomalous scattering it would 
therefore be possible to distinguish between polytypes 
with hexagonal symmetry in the normal diffraction 
pattern but a structure of trigonal symmetry (i.e. show- 
ing diffraction enhancement of symmetry) on the one 
hand, and truly hexagonal polytypes on the other hand. 

Anomalous scattering cannot, however, be used to 
determine the polytype structure via a determination 
of phases. This method presupposes a knowledge of 
the position of the anomalous scatterers within the 
unit cell and this knowledge is available only when 
the polytype is already known. 

To any polytype with a space group of a(xyz) which 
contains a polar axis (i.e. P3ml ,  R3ml  and P63mc) 
there exists an essentially different polytype giving 
exactly the same diffraction diagram, i.e. there exists 
a structure homometric* to it. Let us consider two 
polytypes and distinguish functions referring to them 
by superscripts. If we choose the crystal axes so that 

O(ol)(xyz) = O(o2)( xyz), (A 5) 
then, if 

O(1)(xyz) = 0(2)(~37:7) (A6) 

and if O(1)(xyz) has a polar axis, the two polytypes 
form a homometric pair, because 

IF'2)(hkl)12= lF(02)(hkl)12lS'2'(hkl)l 2 
_ ( D  2 (1)  2 - F o (hk/)l IS (hkt)[ =F(l'(hkl)lL (A7) 

Some of the polytypes which have been stated to 
be uniquely determined possess homometric mates 
from whom they certainly could not have been dis- 

* For a definition and discussion of homometric structures 
s e e  e.g. Lipson & Cochran (1953) p. 145, 167 ft. 

tinguished. Thus for example from 28 polytypes re- 
ported upon and referred to in a series of papers by 
Alexander, Brafman, Mardix and Steinberger, exactly 
one half possess homometric mates. 

Anomalous scattering cannot help in this case, 
either, because r ( 1 ) _  ~-(2) and thus the argument of at 0 a  n ~ X 0 a t l  

(A7) holds for anomalous scattering as well. 
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